Towards Intuitive Rigid-body Physics Through Parameter Search

Javier Felip! and David Gonzalez-Aguirre’ and Omesh Tickoo!

Abstract— The ability to predict the future location of objects
is key for robots operating in unstructured and uncertain
scenarios. It is even more important for general purpose
humanoid robots that are meant to operate and adapt to
multiple scenarios. They need to determine possible outcomes
of actions, reason about their effect and plan subsequent
movements accordingly to act preemptively. The prediction
ability of current robotic systems in is far from that of humans.
Neuroscience studies point out that humans have a predictive
ability, called intuitive physics, to anticipate the behavior of
dynamic environments enabling them to predict and take
preemptive actions when necessary, for example to catch a flying
ball or grab an object that is about to fall off a table.

In this paper, we present a system that learns to predict
based on previous observations. First, object’s physical param-
eters are learned through observation using parameter search
techniques. Second, the learned dynamic model of objects
is used to generate probabilistic predictions through physics
simulation. The parameter search update rules proposed, are
compared to other approaches from the state-of-the-art in
physical parameter learning. Finally, the predictive capability
is evaluated through simulated and real experiments.

I. INTRODUCTION

Reasoning in cognitive systems requires a mechanism to
foretell the evolution of an observed scene. Prediction is
important to evaluate the outcome of a previously executed
action and plan accordingly (e.g. to avoid a ball it is neces-
sary to predict its trajectory). This prediction ability needs
to be learned from experiences and adapt to new scenarios,
which becomes critical in the specific case of multi-purpose
humanoid robots.

There are many neuroscience studies that propose models
of human intuitive physics [1], [2]. However, there is no
clear consensus on internal representations of objects, envi-
ronment, action and interactions. While on the one hand, it
is accepted that the physics laws are not directly encoded in
the brain and humans use simplifications and heuristics to
make predictions [3]; on the other hand, some studies point
out that a Newtonian representation of the environment can
be used to mimic the prediction ability of humans [4], [5].

In this paper, an approach to intuitive physics is im-
plemented and evaluated. It is able to observe a scene,
learn the required physical properties of the objects and
provide probabilistic predictions. For the learning phase, we
approach the problem of determining the physical parameters
of objects as a black-box optimization problem and evaluate
several methods for our specific use-case. Once parameters

1 Intel Labs. 2111 Northeast 25th Street, Hillsboro, OR 97124, USA
{javier.felip.leon, david.i.gonzalez.aguirre,
omesh.tickoo} @intel.com

Fig. 1. Prediction results after looking at the first 3 points of the green
trajectory. Thin blue lines: Predicted trajectory distribution. Thick green
line: Observed trajectory

are learned, predictions are generated using an implemen-
tation of the noisy-newton paradigm [5]. The approach is
quantitatively and qualitatively validated through simulated
and real experiments.

The contributions of this paper are: i) Application of novel
search methods for learning object and environment material
parameters. ii) Evaluation of search methods that outperform
state-of-the-art for this particular problem. iii) Quantitative
and qualitative evaluation of predictions, showing that it is
possible to learn an intuitive physics model from observa-
tion and provide reliable predictions for a reduced object
universe.

II. RELATED WORK

Available prediction methods can be classified into three
main types: data-driven, model-based and hybrid. In an effort
to use a data-driven approach for prediction, Kopicki et. al.
[6] used machine learning techniques to encode the effects
of physical interaction on objects. However, the approach
lacks generalization, produce implausible results and requires
object-wise manual parameter tuning. This method was im-
proved by Belter et. al. [7], combining a physics engine with
the learning approach to force physically plausible predic-
tions. As Belter et. al. claim, their hybrid method provides
fairly good results useful for prediction. However, it inherits
generalization problems from data-driven methods and high
dimensionality from model-based approaches. More recently,
data-driven approaches that use deep neural networks have

been proposed [8]. Nevertheless, as analyzed by Zhang et.
al. [9] model-based approaches naturally generalize (w.r.t
materials and objects), while they also capture the way
human judgment works and seem to encode causal relations
where so far DNNs have not been successful.

The approach presented in this work is model-based and
uses a physics engine in its core. Physics engines have
already been used to predict the future state of the world
for a variety of applications like trajectory prediction [10],
manipulation [11] and tracking [12]. However, like most
model-based systems they require a lot of parameters to
be tuned. Some approaches make assumptions about those
parameters such as friction coefficients, restitution coeffi-
cients and material density. In the presented approach, those
parameters are obtained using parameter search techniques
combined with scene observation. The use of model-based
approaches has its advantages and disadvantages:

v' Can be tuned through parameters, while data-driven
approaches have to re-train the interactions with specific
object instances.

x Lack of robustness and adaptation to uncertainty of
sensor data used to perceive the environment.

In the last decade, probabilistic approaches have become
very popular to manage uncertainty in model based systems
[13]. The probabilistic approach to physics simulation is
known as approximate physics and is commonly imple-
mented using the noisy-newton paradigm [5] which consists
on performing several simulations adding noise to the initial
state of the objects to obtain different possible results [4].
These kind of models have been used to mimic human
intuitive physics [5], [14], [15]. Noisy-newton paradigm is
model-based and parameters have huge impact on results.
In this paper, we use the noisy-newton approach to provide
probabilistic predictions. In addition, model parameters are
estimated through observation.

Wau et. al. implemented a similar idea using object tracking
to obtain observations of the object trajectories and fit the
simulation parameters to match each observation [16]. The
authors demonstrated human-like prediction. However, the
learning is performed independently for each observed scene
and does not integrate different observations, their parameter
search method selection is not evaluated or compared to other
relevant methods and their predictions do not provide an
associated confidence value.

III. METHODOLOGY

The proposed intuitive physics system uses a physics
engine to obtain expected trajectories of observed objects.
Probabilistic predictions are provided using a noisy-newton
approach with the observed dynamic parameters 6, and the
learned static parameters 6. Besides the parameters 64 and
s, predictions also depend on the set of observed object
primitives €2, and the set of environment primitives Q..
Only rigid object primitives (sphere, box and capsule) with
uniform density are considered. For the application of our
approach in a real scenario, we consider €2,, 2. and 6, to

be obtained by the perception system (see an example in
Sec. IV).

In order to learn 6, a set of observations containing object
identifier, shape primitive and trajectory are required. Next, a
parameter search is performed to obtain the values of 6, that
generate predictions closer to observations (i.e. minimizes
the cost function). Once the learning process converges,
predictions can be generated by providing each object’s
identifier and initial dynamic parameters 6. The output is
the expected probabilistic trajectory for each object.

A. Parameter space

Provided the set of observed objects €2, and the set of
environment objects €., the behavior of simulations depends
on two sets of parameters 6; and 6;

1) Dynamic parameters: The first set, 6, is associated to
each object motion and can change over time. Each object
requires its own dynamic parameter set:

« Position: 7 € R?

o Orientation quaternion: ¢ € H

o Linear velocity: & € R3

o Angular velocity: w € R?

No external forces (except gravity) are assumed thus
acceleration is not included as a state parameter. Other
effects such as air flow, temperature, humidity etc. are not
considered, their influence to the results is assumed to be
negligible in our simulations.

2) Static parameters: The second set 65 is bound to
material properties. 6 are shape and material dependent and
we assume that they do not change over time. Friction and
restitution coefficients are known to be pairwise. It means
that the coefficient depends not only on one material but on
the specific pair of materials that are in contact.

e Mass: M € R

o Body inertia matrix: I € R3*3

« Pairwise static friction coefficient: s, € R

o Pairwise dynamic friction coefficient: g € R
« Pairwise rolling coefficient: p, € R

« Pairwise restitution coefficient: e € R

Unlike other dynamic simulations, in this paper friction
and restitution are modeled as pairwise coefficients. Thus, the
number of parameters) € N that each pairwise coefficient
requires, depends on the number of materials m € N¥
present on each observation and it can be calculated by
w={m+2‘($!2)” it m > 2 0

1, otherwise.

Mass M and inertia I depend only on object’s material
density p € R and its volume v € R. Therefore, given that
the object geometric primitive is an input to the system, both
M and I can be replaced by p. After this simplification, the
remaining parameter set is:

0s = {p, tts, pta, piry e} and 0y = {z,q, &, w}. (2)

6, is obtained through observation, thus only 6, is learned
leaving the dimensionality of the optimization problem to be:

05| = m + 49, 3)

where 1 is obtained from Eq. 1 and m € N7 is the number
of different materials considered. On any observation there is
at least one object and one material. However, in addition to
the object’s materials, an extra material for the environment
static objects is added.

B. Trajectory representation and distance metric

Trajectories are represented by series of 4-tuples where the
first three values represent the 3D position and the fourth the
time-stamp. See Eq. 4 where ®(7) : R* — R is a function to
extract the time-stamp of a trajectory data point. The j-th data
point in a trajectory is denoted as 7;. In a valid trajectory,
the time dimension is monotonically increasing.

®(1) =7-]0,0,0,1],
T o ={T; e RY®(T;41) > (T;)}-

In order to determine the error of a predicted trajectory
and its corresponding observation, a method to calculate the
difference between two trajectories is required. A common
metric to compare curves is the Hausdorff distance [17], but
this distance does not take into account the order of points.
The Fréchet distance [18] takes into consideration the order
of points but it does not reflect the simultaneous increment
in the temporal dimension. Now by taking into account that
time increases simultaneously along both trajectories, two
specific distance calculations for discrete trajectories were
implemented. Given two trajectories 7 € 7 and 7% € T,
their distance can be calculated as follows: First, a time-
synchronized set 7¢ € 7T is obtained using the two time
neighbors from 77 for each data point in 7%:

“4)

7;-0={< w) TP w T |
O(TY) > (T) > o(TP) A (5)
(T“)—<I>(7Zb)}
B(T,) — (1) J

where w is the interpolation weight that depends on the
time distance to each neighbor in Tb. Second, we define
the operator I'(7) : R* — R* to extract the spatial position
of a trajectory point as: I'(7) = diag(1,1,1,0) - 7

Finally, the following functions to compute distance
among trajectories can be used:

I7°
D(T*.T*) = WZ\F TN ©

D(T* T°) = %%?(’F(Ta) D(T)],)- ©)

See trajectory comparison in Fig. 5. Due to the max
operator, D is very sensitive to outliers and sensing errors.

However, this metric is closer to well known trajectory
comparison approaches [17], [18] that in the absence of
outliers and small training sets yield good results. The
selection of the distance metric to be used will depend on
the quality and quantity of the training data. To improve the
reliability of our experiments, due to noisy data we have
selected D.

When a contact occurs, object orientation has a critical
role in resulting velocities. Due to physical interaction of
objects, their trajectory in the orientation space has a direct
effect on objects’ translation trajectory. Therefore, a more
accurate object orientation prediction will result in a closer
trajectory using the metrics described above. For this reason
we consider objects’ orientation to be evaluated implicitly
by the comparison of full trajectories only in translation.

C. Cost function

The cost function J(6;) is used to evaluate the fidelity
of predictions given a set of ground-truth observations Y.
Each observation Y’ € Y contains one trajectory Y;' for
each object present in that observation. Therefore Y refers
to the trajectory of the j-th object in the i-th observation.
Conversely, X is the prediction set formed by predictions.
For each observation Y? € Y a prediction X! € X is
computed obtaining one trajectory X; for each object present
in the observation. Although the simulation depends on
several other factors (0,4, €2, and €)), the system is able to
observe them which leaves only 6, to be learned, therefore
the cost function only depends on the static parameters 6,
and is defined as follows:

Y] v’

)\ZZD (X1, Y}). (8)

i=1 j=1

The cost of the current parameter values 6, is obtained
as the mean trajectory difference between all the predicted
and observed trajectories. The A multiplier used to obtain
the mean over all the trajectory differences is calculated as
follows:

v .

= (X m) ©

D. Parameter search

Behavior of objects depends on 1) the simulator con-
figuration and 2) laws of dynamics implementation, there
is no guarantee of J to have only one local minimum
and be smooth. In this scenario, gradient based methods
do not guarantee convergence to a global minimum. For
these reasons, we can approach the problem of determining
fs; as a black-box function optimization. A very similar
problem is tackled by the Deep Learning community to
determine the best value of neural network hyper-parameters.
The state-of-the-art in hyper-parameter search is focused on
rather simple update rules [19]. For the specific problem
presented in this paper, Wu et. al. [16] have successfully

applied Monte-Carlo Markov Chains (MCMC) with one-
dimensional Metropolis-Hastings (1D-MH). However, as our
experimental results show, there are superior approaches and
update rules outperforming this algorithm.

In this work, we use a parameter search approach to obtain
0. It is an iterative process (See Algorithm 1) that minimizes
the cost function result by optimizing the parameter values
0, given a set of observations Y and a convergence criteria &.
First, the candidate parameters 6/, are established depending
on the search strategy used (namely update rule). Then, one
simulation for each observation Y; € Y is executed to obtain
predictions X; € X. The cost of the candidate parameter
set 67 is obtained using J(6,) in Eq. 8. The parameter set
05 is updated if the candidate parameters ¢, used to obtain
X have produced lower cost. The algorithm ends when the
convergence criteria is met, this is usually implemented based
on a limit number of iterations, number of iterations without
reducing the error or the error being below a threshold.

Algorithm 1 Parameter search
1: function PARAMETERSEARCH(Y, &)
2 €min = OO
3 while not(¢) do
4 6’ + updateRule(;)
5: X + RunSimulations(6%,Y)
6
7
8
9

if J(0.) < €min then
€Emin S J(eg)
05 0.

return 0,

In this paper we propose the following new update rules:
parameter gradient search, adaptive random search,
hybrid search, hybrid-random search and compare them
with: 1) methods from the hyper-parameter search literature,
namely grid search, random search, coordinate descent and
ID-MH; and 2) one of the most popular black-box function
optimization methods: Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) [20].

o Grid search: Tests all possible parameter combinations
changing one value at a time with a fixed increment dp.
The number of iterations for a complete grid search is
n%"" where n is the number of parameters and 6p !
the possible values for each parameter. This makes the
approach only suitable for low number of parameters
that can take few values.

« Random search: All the parameter values are randomly
generated from a uniform distribution over each param-
eter minimum and maximum values.

¢ Coordinate descent: Similar to grid search, but sweeps
parameters one by one without testing all combinations.
The number of iterations required is n - dp~! for
each sweep of all the parameters. The order used to
modify the parameters is randomly generated before
each sweep.

o Parameter gradient search: The first iteration uses
random search. For the rest, a random parameter is

targeted and the increment is set to the learning rate
dp = a. The parameter is updated with dp. Subsequent
iterations continue adding the same Jp if the cost was
reduced. Otherwise dp = —dp/2. If dp is below a
configurable threshold /5 the next parameter is targeted.

o Adaptive random search: The first iteration uses
random search. Subsequent iterations use dp =
U(—€;—1,€i—1) where ¢; corresponds to the previous
iteration cost. This strategy adapts the parameter ac-
counting for the current cost of the parameter set.

o Hybrid search: A combination of parameter gradient
search and random search that performs a configurable
number of random search iterations ¢ for initialization
before switching to the parameter gradient update rule.

o Hybrid-random search: A variation of the hybrid
search that switches to adaptive random search after the
desired number s of hybrid search sweeps is performed.

o 1D-MH: §p is sampled from U (—c, o) where « is the
learning rate. On each iteration Jp is added to a single
parameter, this method is implemented in [16].

e« CMA-ES: Is an evolutionary algorithm where in each
iteration a set of A\ candidate solutions are generated.
On each iteration, for each candidate Jp is obtained
parameter-wise based on the covariance matrix of the
parameters. The details of this derivative-free iterative
optimization method can be found in [20].

E. Probabilistic physics simulation

As discussed by Gerstenberg et.al [5], the implementation
of a human-inspired prediction engine based on Newtonian
laws of physics, requires probabilistic results. Once the pa-
rameters 0, of the observed objects are learned, a simulation
can be executed to obtain a probabilistic prediction. How-
ever, a physics engine is deterministic and cannot provide
likelihoods that represent confidence of predictions.

In the literature, probabilistic physics engines are imple-
mented adding random noise to the initial dynamic state of
the objects f; and counting the number of results that satisfy
a specific condition [14]. These implementations are able to
answer questions such as: Will it fall? or Will it collide?
but are task-based and lack generality. Our implementation
provides a more generic approach to intuitive physics engines
that is not task-based and can answer queries about future
states in a probabilistic fashion.

Similarly to other approaches, in our implementation a
configurable number of simulations are run for each predic-
tion. For each simulation, Gaussian noise is added to the
perceived state (see Sec. III-A) of the objects 0;. The dif-
ference is in the result which consists of a set of trajectories
that are combined into a single prediction as shown in Fig. 1.

F. Physics engine selection

There are several available game physics engines. How-
ever, game oriented physics engines focus on obtaining visual
appealing results instead of high fidelity simulation. An
evaluation of the most important engines from the robotics
perspective can be found in [11]. To ease the problem of

Fig. 2. Simulated experimental environment with a sample spherical object.
Orange vectors show a sample set of 100 initial positions and velocities
of the objects used for training. Blue circumference shows the seed initial
positions to generate the objects’ initial state. The area of the squares on the
floor plane is 1m?2 and the quadrilateral formed by the 4 walls is 10 X 10m.

selecting a physics engine there have been efforts on middle-
ware implementation that can provide abstract interfaces to
any supported physics engine such as PAL [21], OPAL [22]
or FISICAS [23]. Unfortunately, those efforts have been
abandoned and no support for new physics engines versions
is provided. In our implementation, the physics engine used
is ODE [24]. As pointed out by Erez et. al., ODE is the open
source physics engine that provides better results for robotics
related tasks [11]. Although ODE does not implement static,
dynamic and rolling friction, in this paper we have extended
it to include those coefficients.

IV. EXPERIMENTAL VALIDATION

For the validation of the proposed approach, we have
designed a simulated experimental environment (See Fig. 2)
that will be used to generate a synthetic dataset which in turn
is used to test the learning and prediction of the implemented
intuitive physics engine.

A. Experimental setup

The simulated environment 2. is depicted in Fig. 2 and
consists of 5 boxes. One for the floor and 4 for the walls
to keep the objects bounded and favor their interaction, the
size of the quadrilateral formed by the walls is 10 x 10
meters. To reduce simulation complexity, the object universe
is restricted to spheres, capped cylinders (i.e. capsules) and
rectangular prisms (i.e. boxes).

B. Synthetic dataset generation

First, a pool of objects is created randomizing their shape
type (box, sphere, capsule) and dimensions sampled from
U4(0.1,0.7) meters. A different material is assumed for each
object and static parameters 6 are randomly generated. The
dataset is generated by running multiple simulations and
storing object trajectories until the desired number of samples
per object is acquired.

Fig. 3. Generated observation with three objects. The noise model used is
N(0,0.02) at 30 Hz sample rate.

For each simulation run, the number of objects to appear
is calculated as k& = [AN/(1,1)]. Then, the object set 2, is
created by randomly selecting & objects from the object pool.
For each object in €2, its initial dynamic parameters 6, are
set using Eq. 10, where 7 and c are the radius and center of
the circumference that will be used as a hint to generate the
initial states for objects as shown in Fig. 2.

x=c+r[sin(a) cos(a) 0]" + N(0,1),
t=c—z+N(0,1),
w=N(0,0.1).

Finally the simulation is executed and the trajectory of
each object is stored. Examples of initial states for the
generated observations are shown by orange vectors in Fig. 2.

In order to provide a more realistic observation dataset,
noise is added to each trajectory point. The noise model
used is set to (0, 0.02) according to state-of-the-art object
recognition and pose estimation algorithms [25] and sample
rate is set to 30 Hz. An example of a generated observation
with three objects is shown in Fig. 3.

(10)

C. Execution

In our experiments a time step of 10ms was used and
simulation time was set to 5 seconds in order to give enough
time for objects to interact with each other. To determine the
sensitivity of the approach to the number of samples, we
have run experiments with 1, 5 and 10 objects and 10, 50
and 100 samples per object (See Fig. 4). To account for the
possible bias of the random functions used by the parameter
search methods, all the experiments in this work have been
executed 10 times and the results averaged. The generated
dataset of trajectories was divided into 80% for training and
20% for testing.

D. Results and discussion

An example of a prediction is shown in Fig. 1. Fur-
thermore, Fig. 4 shows a comparison of the error obtained
for training and test sets. Overall, the trajectory prediction

obtains an average error of 0.911 m +0.189 in the test
datasets. The obtained error might seem high but a qualitative
evaluation of prediction results shown in Fig. 5 gives us
the intuition that despite the apparent high error, predictions
are reliable and consistent. Especially if we consider that
trajectories of objects are predicted 5 seconds into the future
and the error added in the trajectory dataset impacts the
initial state estimation that causes the prediction to drift along
time.

Given that a prediction (with 20 noisy-newton samples)
takes around 10 ms, predictions can be updated on-line
according to the perceived state reducing error and drift.
Experiments were executed on a Intel(R) Core(TM) i7-
6700K CPU @ 4.00GHz with 32Gb DDR4@2400Mhz.

V. SEARCH ALGORITHMS EVALUATION

We have evaluated 9 different parameter search methods:
grid search, random search, coordinate descent, parameter
gradient search, adaptive random search, hybrid search,
hybrid-random search, 1D-MH and CMA-ES. The evaluation
criteria is the convergence speed (i.e. number of iterations)
and the final error. Table I shows the parameters used for
each method during the experimental evaluation. To account
for the multiple candidates per iteration used by CMA-ES,
we have counted each J(f,) evaluation as one iteration.
Although not all the update rules have exactly the same
per-iteration cost, the simulation roll-out required to evaluate
each 0/ is orders of magnitude more expensive than any of
the update rules. For that reason we consider all the update
rules to have a negligible per-iteration cost enabling us to
compare convergence rate and speed with the number of
iterations.

All methods were tested with datasets composed of 1, 10
and 20 random objects with 1, 10 and 50 samples per object.
The datasets were generated as explained in Section IV-B.
The different datasets test how dimensionality and number of
samples impact performance. As shown in Fig. 6a, for low
dimensions (14 as obtained by Eq. 3 with m = 2) all the
methods converge fast (around 50 iterations) except 1D-MH
that apparently gets stuck in a local minimum.

As expected, in higher dimensional spaces; grid search,
coordinate descent and parameter gradient do not provide
good results. Surprisingly, as shown in Fig. 6b the adaptive-
random strategy obtains fast convergence and low error for
275 parameters (m=11). As the parameter dimensionality
keeps increasing, the CMA-ES method provides better results
but adaptive-random is still close to the best performance.
Results for a 20 object dataset, with 945 parameters are de-
picted in Fig. 6¢. Considering the simplicity of the adaptive-
random strategy versus the more sophisticated CMA-ES, it
is still a good choice for the tested dataset configurations.

VI. REAL EXPERIMENTS

Experiments were performed to showcase the application
of the presented ideas on a real scenario. To capture the
scene, an RGBD sensor was used. Point cloud sequences
of bouncing balls were captured and used as input to our

5p=0.05
a=0.1,8=0.001

Grid and Coordinate descent
Parameter-gradient and adaptive random

Hybrid 1= 300
Hybrid-random s=5

1D-MH [16] a = 0.05
CMA-ES [20] oc=02,A=20

TABLE I
PARAMETER SETTINGS USED FOR THE PARAMETER SEARCH METHOD
EVALUATION.

system, each one containing one observation of a single
object.

A. Experimental setup

The experimental objects used were 3 spheres with 3 cm,
5 cm and 7 cm radius. The object universe to be observed
was restricted to spherical shapes to ease object detection.
The environment can be composed by any number of planes
with the floor plane perpendicular to the gravity vector being
the dominant plane. The experimental setup can also be seen
in the accompanying video, during the real experiments data
acquisition scene.

B. Environment modeling

Our experimental environment is composed of a sup-
porting floor plane and two walls. However, there are no
assumptions made on the number of planes that can be
present in the scene. The environment is reconstructed for
each observation. The plane that contains more points, is
assumed to be the supporting plane and the gravity vector
is assumed to be parallel to the supporting plane normal.
An example of an observation with the detected planes
and gravity vector is shown in Fig. 7. Planes are detected
fusing the first frames of each observation file applying the
RANSAC [26] algorithm with a plane model.

C. Real dataset generation

We collected 90 observations of the three objects described
in Sec. VI-A which were thrown into the scenario by hand
with different velocities and initial positions. The accompa-
nying video shows the data acquisition process, the parameter
search and several predictions with the measured prediction
error.

For each frame of each observation file, all the points
that belong to a detected plane are removed. The remaining
points are used to run a RANSAC algorithm using a spherical
model to detect the bouncing spheres. The detection is
performed frame-to-frame and no temporal data is used.
After processing all the files, the dataset for learning is
generated using the trajectory provided by the frame-to-
frame object detection and averaging the detected object’s
dimensions. See an example of a trajectory in Fig. 7.

D. Results and discussion

We executed the parameter search process for each group
of 30 samples and obtained the mean error shown in Fig. 8.
Although errors are lower than results obtained with the

Mean error (m)
o
]
T

0o
XA
1%3te% %%

T
Training
Test

£x
X

0%
2%

7
IR I
SRS
RS
X

%
2R
K55
%
52
4
2%

A
o

X

2

X
QK%
oo

o
%
2
R
R
o5
oteted

Q
&w&.

$%4%5%%%

%
0%t

R
B2
R
&
&
%
X
%
R

1 object
10 samples

1 object
50 samples

1 object
100 samples

5 objects
10 samples

5 objects
50 samples

=
EXXX

5 objects
100 samples

10 objects
10 samples

10 objects
50 samples

10 objects
100 samples

Average

Fig. 4. Training and test results after 10 executions on different datasets.

Mean distance: 0.758

Mean distance; 1.22

Mean distance: 1.85
Fig. 5.

Examples of predicted trajectories (blue) compared with the

test set trajectories (green) and the error between each data point (red).
Although mean errors are high, trajectories are qualitatively approximate.
Mean distance corresponds to J(6s) for each shown observation-prediction

pair.

synthetic dataset, it is important to note that the scale of

objects and trajectories is also smaller.

Predictions are very sensitive to initial state estimation
errors that produce early trajectory drift. This idea is sup-
ported by the inverse correlation of object size and prediction
error as shown in Fig. 8. However, results show that feasible
trajectories can be predicted even with an unfiltered dataset

obtained with straightforward methods.

VII. CONCLUSIONS

Our intuitive physics engine is able to learn a reduced
universe of object models from observations and make prob-
abilistic predictions of their motion. Predictions were vali-
dated by simulated and real experiments. Our results show
that it is possible to use probabilistic simulation to provide
fairly accurate predictions. However, the learning process is
time consuming and has to be substantially improved to allow

on-line learning and prediction.

Additionally, our experimental evaluation of 9 different
parameter search methods, has shown that both CMA-ES
and our Adaptive Random are a good choice for learning.

Such an intuitive physics engine will enable further re-
search in probabilistic predictive models. It is our firm belief
that on-line geometric and physical modeling will play a

major role for the future of humanoid robots.

1 Object @ 50 samples per object

3 T T T T T T T T
Adaptive-Random —+—
CMA-ES —x—
1D-MH —*—
25 Coordinate Descent 1
Hybrid-Random
- Hybrid —o—
& Parameter search —e—
= 23 Random —a—
Grid —a—
° %
o
©
g 15 A=A .
z —t
1 4
I
0.5 i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
(a)
10 Object @ 50 samples per object
2 T T T T T T T T
Adaptive-Random —+—
CMA-ES —x—
18 1D-MH —*—
Coordinate Descent
Hybrid-Random
18 Hybrid —o— |
& Parameter search —e—
= andom —a—
1.4 i om e
[
g i
c 1.2 .
$
Z
1 J
08 R e e > l:U .]
0.6 i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
(®)
20 Object @ 50 samples per object
16 T T T T T T T T
Adaptive-Random —+—
CMA-ES —x—
15 1D-MH >
Coordinate Descent
1.4 | a4 a s a a s a s s a a . HybfidRandom, | |
- - Hybrid —o—
& Parameter search —e—
= 13 L Random —a— |
: Grid —4a—
[
o
E =
$
4
5 SIS —R—a—e—
O S e e S S S S
e x X
0.9 i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations
(©)

Fig. 6. Parameter search performance evaluation: J(6) vs. iterations for
datasets of 1, 10, 20 objects and 50 samples per object. For each iteration
and update rule, vertical axis shows the J(6;) value averaged over 10 runs.

Fig. 7.
. Detected planes wire-frame in black. Detected sphere shown in cyan.

setup

Observation process of a bouncing ball on the real experimental

Observed trajectory is shown in magenta and each sample point is shown
in cyan. Gravity vector is shown in red.

| :
27 :
& V00]
= V. /)
wrA i
Blue ball Large white ball Small white ball
Fig. 8. Prediction error for each of the objects in the real dataset.
REFERENCES
[11 1. Pearl, Causality: Models, Reasoning, and Inference. New York,
NY, USA: Cambridge University Press, 2000.
[2] P. Wolff, “Dynamics and the perception of causal events,”

[3]

[4]

[5]

[6]

2006, (in press). In T. Shipley & J. Z In T. Shipley & 1J.
Zacks (Eds.), Understanding events: How humans see, represent,
and act on events. Oxford University Press. [Online]. Available:
http://philsci-archive.pitt.edu/3127/

1. E. K. Andersson and S. Runeson, “Realism of Confidence, Modes of
Apprehension, and Variable-Use in Visual Discrimination of Relative
Mass,” Ecological Psychology, vol. 20, no. 1, pp. 1-31, 2008.

A. N. Sanborn, V. K. Mansinghka, and T. L. Griffiths, “Reconciling
intuitive physics and Newtonian mechanics for colliding objects.”
Psychological review, vol. 120, no. 2, pp. 411-37, apr 2013.

T. Gerstenberg, N. D. Goodman, D. A. Lagnado, and J. B. Tenenbaum,
“Noisy Newtons: Unifying process and dependency accounts of causal
attribution,” 2012.

M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. Wyatt, “Learning

Fig. 9.
compared with the observed trajectory (green) and the error between each
data point (red). Please see more examples in the attached video. Mean
distance corresponds to J(6s) for each shown observation-prediction pair.

Prediction result of a real observation. Predicted trajectory (blue)

[7

—

[8

=

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

(22]
[23]
[24]

[25]

[26]

to predict how rigid objects behave under simple manipulation,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, may 2011, pp. 5722-5729.

D. Belter, M. Kopicki, S. Zurek, and J. Wyatt, “Kinematically opti-
mised predictions of object motion,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, sep 2014, pp.
4422-44217.

T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman, “Visual Dynamics:
Probabilistic Future Frame Synthesis via Cross Convolutional
Networks,” jul 2016. [Online]. Available: http://arxiv.org/abs/1607.
02586

R. Zhang, J. Wu, C. Zhang, W. T. Freeman, and J. B.
Tenenbaum, “A Comparative Evaluation of Approximate Probabilistic
Simulation and Deep Neural Networks as Accounts of Human
Physical Scene Understanding,” may 2016. [Online]. Available:
http://arxiv.org/abs/1605.01138

N. Kyriazis, I. Oikonomidis, and A. Argyros, “Binding Computer
Vision to Physics Based Simulation: The Case Study of a Bouncing
Ball,” in Procedings of the British Machine Vision Conference 2011.
British Machine Vision Association, 2011, pp. 43.1-43.11.

T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, may 2015, pp. 4397-4404.

K. Pauwels and D. Kragic, “SimTrack: A simulation-based framework
for scalable real-time object pose detection and tracking,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, sep 2015, pp. 1300-1307.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as an
engine of physical scene understanding,” Proceedings of the National
Academy of Sciences, vol. 110, no. 45, pp. 18327-18332, nov 2013.
T. Ullman, N. Goodman, and J. Tenenbaum, “Learning physics from
dynamical scenes,” in In Proceedings of the Thirty-Sixth Annual
Conference of the Cognitive Science society, 2014.

J. Wu, L. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:
Perceiving Physical Object Properties by Integrating a Physics Engine
with Deep Learning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 127-135.

F. Hausdorff, Felix Hausdorff - Gesammelte Werke Band III: Mengen-
lehre (1927,1935) Deskripte Mengenlehre und Topologie. ~ Springer
Berlin Heidelberg, 2008.

M. Fréchet, Sur quelques points du calcul fonctionnel, 1906.

G. Luo, “A review of automatic selection methods for machine
learning algorithms and hyper-parameter values,” Network Modeling
Analysis in Health Informatics and Bioinformatics, vol. 5, no. 1, p. 18,
2016.

N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation
of distribution algorithms, J. Lozano, P. Larranaga, 1. Inza, and
E. Bengoetxea, Eds. Springer, 2006, pp. 75-102.

A. Boeing and T. Bréunl, “Evaluation of real-time physics simulation
systems,” in Proceedings of the 5th international conference on Com-
puter graphics and interactive techniques in Australia and Southeast
Asia - GRAPHITE '07. New York, New York, USA: ACM Press,
dec 2007, p. 281.

(2004) Opal: Physics abstraction layer. [Online]. Available: http:
/lopal.sourceforge.net/index.html

(2011) Fisicas: Physics abstraction layer.
http://opengrasp.sourceforge.net/FISICAS.html
R. Smith, “Open Dynamics Engine - ODE,” 2007. [Online]. Available:
www.ode.org

A. Aldoma, F. Tombari, R. B. Rusu, and M. Vincze, “OUR-CVFH-
Oriented, Unique and Repeatable Clustered Viewpoint Feature His-
togram for Object Recognition and 6DOF Pose Estimation,” in Pattern
Recognition. Springer Berlin Heidelberg, 2012, pp. 113-122.

M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381-395,
June 1981.

[Online]. Available:

