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Abstract— The ability to predict the future location of objects
is key for robots operating in unstructured and uncertain
scenarios. It is even more important for general purpose
humanoid robots that are meant to operate and adapt to
multiple scenarios. They need to determine possible outcomes
of actions, reason about their effect and plan subsequent
movements accordingly to act preemptively. The prediction
ability of current robotic systems in is far from that of humans.
Neuroscience studies point out that humans have a predictive
ability, called intuitive physics, to anticipate the behavior of
dynamic environments enabling them to predict and take
preemptive actions when necessary, for example to catch a flying
ball or grab an object that is about to fall off a table.

In this paper, we present a system that learns to predict
based on previous observations. First, object’s physical param-
eters are learned through observation using parameter search
techniques. Second, the learned dynamic model of objects
is used to generate probabilistic predictions through physics
simulation. The parameter search update rules proposed, are
compared to other approaches from the state-of-the-art in
physical parameter learning. Finally, the predictive capability
is evaluated through simulated and real experiments.

I. INTRODUCTION

Reasoning in cognitive systems requires a mechanism to

foretell the evolution of an observed scene. Prediction is

important to evaluate the outcome of a previously executed

action and plan accordingly (e.g. to avoid a ball it is neces-

sary to predict its trajectory). This prediction ability needs

to be learned from experiences and adapt to new scenarios,

which becomes critical in the specific case of multi-purpose

humanoid robots.

There are many neuroscience studies that propose models

of human intuitive physics [1], [2]. However, there is no

clear consensus on internal representations of objects, envi-

ronment, action and interactions. While on the one hand, it

is accepted that the physics laws are not directly encoded in

the brain and humans use simplifications and heuristics to

make predictions [3]; on the other hand, some studies point

out that a Newtonian representation of the environment can

be used to mimic the prediction ability of humans [4], [5].

In this paper, an approach to intuitive physics is im-

plemented and evaluated. It is able to observe a scene,

learn the required physical properties of the objects and

provide probabilistic predictions. For the learning phase, we

approach the problem of determining the physical parameters

of objects as a black-box optimization problem and evaluate

several methods for our specific use-case. Once parameters
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Fig. 1. Prediction results after looking at the first 3 points of the green
trajectory. Thin blue lines: Predicted trajectory distribution. Thick green
line: Observed trajectory

are learned, predictions are generated using an implemen-

tation of the noisy-newton paradigm [5]. The approach is

quantitatively and qualitatively validated through simulated

and real experiments.

The contributions of this paper are: i) Application of novel

search methods for learning object and environment material

parameters. ii) Evaluation of search methods that outperform

state-of-the-art for this particular problem. iii) Quantitative

and qualitative evaluation of predictions, showing that it is

possible to learn an intuitive physics model from observa-

tion and provide reliable predictions for a reduced object

universe.

II. RELATED WORK

Available prediction methods can be classified into three

main types: data-driven, model-based and hybrid. In an effort

to use a data-driven approach for prediction, Kopicki et. al.

[6] used machine learning techniques to encode the effects

of physical interaction on objects. However, the approach

lacks generalization, produce implausible results and requires

object-wise manual parameter tuning. This method was im-

proved by Belter et. al. [7], combining a physics engine with

the learning approach to force physically plausible predic-

tions. As Belter et. al. claim, their hybrid method provides

fairly good results useful for prediction. However, it inherits

generalization problems from data-driven methods and high

dimensionality from model-based approaches. More recently,

data-driven approaches that use deep neural networks have



been proposed [8]. Nevertheless, as analyzed by Zhang et.

al. [9] model-based approaches naturally generalize (w.r.t

materials and objects), while they also capture the way

human judgment works and seem to encode causal relations

where so far DNNs have not been successful.

The approach presented in this work is model-based and

uses a physics engine in its core. Physics engines have

already been used to predict the future state of the world

for a variety of applications like trajectory prediction [10],

manipulation [11] and tracking [12]. However, like most

model-based systems they require a lot of parameters to

be tuned. Some approaches make assumptions about those

parameters such as friction coefficients, restitution coeffi-

cients and material density. In the presented approach, those

parameters are obtained using parameter search techniques

combined with scene observation. The use of model-based

approaches has its advantages and disadvantages:

X Can be tuned through parameters, while data-driven

approaches have to re-train the interactions with specific

object instances.

× Lack of robustness and adaptation to uncertainty of

sensor data used to perceive the environment.

In the last decade, probabilistic approaches have become

very popular to manage uncertainty in model based systems

[13]. The probabilistic approach to physics simulation is

known as approximate physics and is commonly imple-

mented using the noisy-newton paradigm [5] which consists

on performing several simulations adding noise to the initial

state of the objects to obtain different possible results [4].

These kind of models have been used to mimic human

intuitive physics [5], [14], [15]. Noisy-newton paradigm is

model-based and parameters have huge impact on results.

In this paper, we use the noisy-newton approach to provide

probabilistic predictions. In addition, model parameters are

estimated through observation.

Wu et. al. implemented a similar idea using object tracking

to obtain observations of the object trajectories and fit the

simulation parameters to match each observation [16]. The

authors demonstrated human-like prediction. However, the

learning is performed independently for each observed scene

and does not integrate different observations, their parameter

search method selection is not evaluated or compared to other

relevant methods and their predictions do not provide an

associated confidence value.

III. METHODOLOGY

The proposed intuitive physics system uses a physics

engine to obtain expected trajectories of observed objects.

Probabilistic predictions are provided using a noisy-newton

approach with the observed dynamic parameters θd and the

learned static parameters θs. Besides the parameters θd and

θs, predictions also depend on the set of observed object

primitives Ωo and the set of environment primitives Ωe.

Only rigid object primitives (sphere, box and capsule) with

uniform density are considered. For the application of our

approach in a real scenario, we consider Ωo, Ωe and θd to

be obtained by the perception system (see an example in

Sec. IV).

In order to learn θs, a set of observations containing object

identifier, shape primitive and trajectory are required. Next, a

parameter search is performed to obtain the values of θs that

generate predictions closer to observations (i.e. minimizes

the cost function). Once the learning process converges,

predictions can be generated by providing each object’s

identifier and initial dynamic parameters θd. The output is

the expected probabilistic trajectory for each object.

A. Parameter space

Provided the set of observed objects Ωo and the set of

environment objects Ωe, the behavior of simulations depends

on two sets of parameters θd and θs;

1) Dynamic parameters: The first set, θd is associated to

each object motion and can change over time. Each object

requires its own dynamic parameter set:

• Position: x ∈ R
3

• Orientation quaternion: q ∈ H

• Linear velocity: ẋ ∈ R
3

• Angular velocity: ω ∈ R
3

No external forces (except gravity) are assumed thus

acceleration is not included as a state parameter. Other

effects such as air flow, temperature, humidity etc. are not

considered, their influence to the results is assumed to be

negligible in our simulations.

2) Static parameters: The second set θs is bound to

material properties. θs are shape and material dependent and

we assume that they do not change over time. Friction and

restitution coefficients are known to be pairwise. It means

that the coefficient depends not only on one material but on

the specific pair of materials that are in contact.

• Mass: M ∈ R

• Body inertia matrix: I ∈ R
3×3

• Pairwise static friction coefficient: µs ∈ R

• Pairwise dynamic friction coefficient: µd ∈ R

• Pairwise rolling coefficient: µr ∈ R

• Pairwise restitution coefficient: e ∈ R

Unlike other dynamic simulations, in this paper friction

and restitution are modeled as pairwise coefficients. Thus, the

number of parameters ψ ∈ N
+ that each pairwise coefficient

requires, depends on the number of materials m ∈ N
+

present on each observation and it can be calculated by

ψ =

{

m+ m!
2!(m−2)! , if m ≥ 2

1, otherwise.
(1)

Mass M and inertia I depend only on object’s material

density ρ ∈ R and its volume v ∈ R. Therefore, given that

the object geometric primitive is an input to the system, both

M and I can be replaced by ρ. After this simplification, the

remaining parameter set is:

θs = {ρ, µs, µd, µr, e} and θd = {x, q, ẋ, ω}. (2)



θd is obtained through observation, thus only θs is learned

leaving the dimensionality of the optimization problem to be:

|θs| = m+ 4ψ, (3)

where ψ is obtained from Eq. 1 and m ∈ N
+ is the number

of different materials considered. On any observation there is

at least one object and one material. However, in addition to

the object’s materials, an extra material for the environment

static objects is added.

B. Trajectory representation and distance metric

Trajectories are represented by series of 4-tuples where the

first three values represent the 3D position and the fourth the

time-stamp. See Eq. 4 where Φ(τ) : R4 7→ R is a function to

extract the time-stamp of a trajectory data point. The j-th data

point in a trajectory is denoted as Tj . In a valid trajectory,

the time dimension is monotonically increasing.

Φ(τ) = τ · [0, 0, 0, 1],

Tj : = {Tj ∈ R
4|Φ(Tj+1) > Φ(Tj)}.

(4)

In order to determine the error of a predicted trajectory

and its corresponding observation, a method to calculate the

difference between two trajectories is required. A common

metric to compare curves is the Hausdorff distance [17], but

this distance does not take into account the order of points.

The Fréchet distance [18] takes into consideration the order

of points but it does not reflect the simultaneous increment

in the temporal dimension. Now by taking into account that

time increases simultaneously along both trajectories, two

specific distance calculations for discrete trajectories were

implemented. Given two trajectories T a ∈ T and T b ∈ T ,

their distance can be calculated as follows: First, a time-

synchronized set T c ∈ T is obtained using the two time

neighbors from T b for each data point in T a:

T c
j =

{

(1− w) · T b
i + w · T b

i+1 |

Φ(T b
i+1) ≥ Φ(T a

j ) ≥ Φ(T b
i ) ∧

w =
Φ(T a

j )− Φ(T b
i )

Φ(T b
i+1)− Φ(T b

i )

}

,

(5)

where w is the interpolation weight that depends on the

time distance to each neighbor in T b. Second, we define

the operator Γ(τ) : R4 7→ R
4 to extract the spatial position

of a trajectory point as: Γ(τ) = diag(1, 1, 1, 0) · τ.
Finally, the following functions to compute distance

among trajectories can be used:

D̄(T a, T c) =
1

|T c|

|T c|
∑

i=1

∣

∣Γ(T a
i )− Γ(T c

i )
∣

∣

2
(6)

D̂(T a, T c) = max
|T c|

(
∣

∣Γ(T a)− Γ(T c)
∣

∣

2
). (7)

See trajectory comparison in Fig. 5. Due to the max

operator, D̂ is very sensitive to outliers and sensing errors.

However, this metric is closer to well known trajectory

comparison approaches [17], [18] that in the absence of

outliers and small training sets yield good results. The

selection of the distance metric to be used will depend on

the quality and quantity of the training data. To improve the

reliability of our experiments, due to noisy data we have

selected D̄.

When a contact occurs, object orientation has a critical

role in resulting velocities. Due to physical interaction of

objects, their trajectory in the orientation space has a direct

effect on objects’ translation trajectory. Therefore, a more

accurate object orientation prediction will result in a closer

trajectory using the metrics described above. For this reason

we consider objects’ orientation to be evaluated implicitly

by the comparison of full trajectories only in translation.

C. Cost function

The cost function J(θs) is used to evaluate the fidelity

of predictions given a set of ground-truth observations Y .

Each observation Y i ∈ Y contains one trajectory Y i
j for

each object present in that observation. Therefore Y i
j refers

to the trajectory of the j-th object in the i-th observation.

Conversely, X is the prediction set formed by predictions.

For each observation Y i ∈ Y a prediction Xi ∈ X is

computed obtaining one trajectory Xi
j for each object present

in the observation. Although the simulation depends on

several other factors (θd, Ωo and Ωe), the system is able to

observe them which leaves only θs to be learned, therefore

the cost function only depends on the static parameters θs
and is defined as follows:

J(θs) = λ

|Y |
∑

i=1

|Y i|
∑

j=1

D̄(Xi
j , Y

i
j ). (8)

The cost of the current parameter values θs is obtained

as the mean trajectory difference between all the predicted

and observed trajectories. The λ multiplier used to obtain

the mean over all the trajectory differences is calculated as

follows:

λ =
(

|Y |
∑

i=1

|Y i|
)−1

(9)

D. Parameter search

Behavior of objects depends on 1) the simulator con-

figuration and 2) laws of dynamics implementation, there

is no guarantee of J to have only one local minimum

and be smooth. In this scenario, gradient based methods

do not guarantee convergence to a global minimum. For

these reasons, we can approach the problem of determining

θs as a black-box function optimization. A very similar

problem is tackled by the Deep Learning community to

determine the best value of neural network hyper-parameters.

The state-of-the-art in hyper-parameter search is focused on

rather simple update rules [19]. For the specific problem

presented in this paper, Wu et. al. [16] have successfully



applied Monte-Carlo Markov Chains (MCMC) with one-

dimensional Metropolis-Hastings (1D-MH). However, as our

experimental results show, there are superior approaches and

update rules outperforming this algorithm.

In this work, we use a parameter search approach to obtain

θs. It is an iterative process (See Algorithm 1) that minimizes

the cost function result by optimizing the parameter values

θs given a set of observations Y and a convergence criteria ξ.

First, the candidate parameters θ′s are established depending

on the search strategy used (namely update rule). Then, one

simulation for each observation Yi ∈ Y is executed to obtain

predictions Xi ∈ X . The cost of the candidate parameter

set θ′s is obtained using J(θ′s) in Eq. 8. The parameter set

θs is updated if the candidate parameters θ′s used to obtain

X have produced lower cost. The algorithm ends when the

convergence criteria is met, this is usually implemented based

on a limit number of iterations, number of iterations without

reducing the error or the error being below a threshold.

Algorithm 1 Parameter search

1: function PARAMETERSEARCH(Y, ξ)

2: ǫmin =∞
3: while not(ξ) do

4: θ′s ← updateRule(θs)
5: X ← RunSimulations(θ′s, Y )
6: if J(θ′s) < ǫmin then

7: ǫmin ← J(θ′s)
8: θs ← θ′s
9: return θs

In this paper we propose the following new update rules:

parameter gradient search, adaptive random search,

hybrid search, hybrid-random search and compare them

with: 1) methods from the hyper-parameter search literature,

namely grid search, random search, coordinate descent and

1D-MH; and 2) one of the most popular black-box function

optimization methods: Covariance Matrix Adaptation Evolu-

tion Strategy (CMA-ES) [20].

• Grid search: Tests all possible parameter combinations

changing one value at a time with a fixed increment δp.

The number of iterations for a complete grid search is

nδp−1

where n is the number of parameters and δp−1

the possible values for each parameter. This makes the

approach only suitable for low number of parameters

that can take few values.

• Random search: All the parameter values are randomly

generated from a uniform distribution over each param-

eter minimum and maximum values.

• Coordinate descent: Similar to grid search, but sweeps

parameters one by one without testing all combinations.

The number of iterations required is n · δp−1 for

each sweep of all the parameters. The order used to

modify the parameters is randomly generated before

each sweep.

• Parameter gradient search: The first iteration uses

random search. For the rest, a random parameter is

targeted and the increment is set to the learning rate

δp = α. The parameter is updated with δp. Subsequent

iterations continue adding the same δp if the cost was

reduced. Otherwise δp = −δp/2. If δp is below a

configurable threshold β the next parameter is targeted.

• Adaptive random search: The first iteration uses

random search. Subsequent iterations use δp =
U(−ǫi−1, ǫi−1) where ǫl corresponds to the previous

iteration cost. This strategy adapts the parameter ac-

counting for the current cost of the parameter set.

• Hybrid search: A combination of parameter gradient

search and random search that performs a configurable

number of random search iterations i for initialization

before switching to the parameter gradient update rule.

• Hybrid-random search: A variation of the hybrid

search that switches to adaptive random search after the

desired number s of hybrid search sweeps is performed.

• 1D-MH: δp is sampled from U(−α, α) where α is the

learning rate. On each iteration δp is added to a single

parameter, this method is implemented in [16].

• CMA-ES: Is an evolutionary algorithm where in each

iteration a set of λ candidate solutions are generated.

On each iteration, for each candidate δp is obtained

parameter-wise based on the covariance matrix of the

parameters. The details of this derivative-free iterative

optimization method can be found in [20].

E. Probabilistic physics simulation

As discussed by Gerstenberg et.al [5], the implementation

of a human-inspired prediction engine based on Newtonian

laws of physics, requires probabilistic results. Once the pa-

rameters θs of the observed objects are learned, a simulation

can be executed to obtain a probabilistic prediction. How-

ever, a physics engine is deterministic and cannot provide

likelihoods that represent confidence of predictions.

In the literature, probabilistic physics engines are imple-

mented adding random noise to the initial dynamic state of

the objects θd and counting the number of results that satisfy

a specific condition [14]. These implementations are able to

answer questions such as: Will it fall? or Will it collide?

but are task-based and lack generality. Our implementation

provides a more generic approach to intuitive physics engines

that is not task-based and can answer queries about future

states in a probabilistic fashion.

Similarly to other approaches, in our implementation a

configurable number of simulations are run for each predic-

tion. For each simulation, Gaussian noise is added to the

perceived state (see Sec. III-A) of the objects θd. The dif-

ference is in the result which consists of a set of trajectories

that are combined into a single prediction as shown in Fig. 1.

F. Physics engine selection

There are several available game physics engines. How-

ever, game oriented physics engines focus on obtaining visual

appealing results instead of high fidelity simulation. An

evaluation of the most important engines from the robotics

perspective can be found in [11]. To ease the problem of



Fig. 2. Simulated experimental environment with a sample spherical object.
Orange vectors show a sample set of 100 initial positions and velocities
of the objects used for training. Blue circumference shows the seed initial
positions to generate the objects’ initial state. The area of the squares on the
floor plane is 1m2 and the quadrilateral formed by the 4 walls is 10×10m.

selecting a physics engine there have been efforts on middle-

ware implementation that can provide abstract interfaces to

any supported physics engine such as PAL [21], OPAL [22]

or FISICAS [23]. Unfortunately, those efforts have been

abandoned and no support for new physics engines versions

is provided. In our implementation, the physics engine used

is ODE [24]. As pointed out by Erez et. al., ODE is the open

source physics engine that provides better results for robotics

related tasks [11]. Although ODE does not implement static,

dynamic and rolling friction, in this paper we have extended

it to include those coefficients.

IV. EXPERIMENTAL VALIDATION

For the validation of the proposed approach, we have

designed a simulated experimental environment (See Fig. 2)

that will be used to generate a synthetic dataset which in turn

is used to test the learning and prediction of the implemented

intuitive physics engine.

A. Experimental setup

The simulated environment Ωe is depicted in Fig. 2 and

consists of 5 boxes. One for the floor and 4 for the walls

to keep the objects bounded and favor their interaction, the

size of the quadrilateral formed by the walls is 10 × 10

meters. To reduce simulation complexity, the object universe

is restricted to spheres, capped cylinders (i.e. capsules) and

rectangular prisms (i.e. boxes).

B. Synthetic dataset generation

First, a pool of objects is created randomizing their shape

type (box, sphere, capsule) and dimensions sampled from

U(0.1, 0.7) meters. A different material is assumed for each

object and static parameters θs are randomly generated. The

dataset is generated by running multiple simulations and

storing object trajectories until the desired number of samples

per object is acquired.

Fig. 3. Generated observation with three objects. The noise model used is
N (0, 0.02) at 30 Hz sample rate.

For each simulation run, the number of objects to appear

is calculated as k = ⌈N (1, 1)⌉. Then, the object set Ωo, is

created by randomly selecting k objects from the object pool.

For each object in Ωo, its initial dynamic parameters θd are

set using Eq. 10, where r and c are the radius and center of

the circumference that will be used as a hint to generate the

initial states for objects as shown in Fig. 2.

x = c+ r [ sin(α) cos(α) 0 ]T +N (0, 1),

ẋ = c− x+N (0, 1),

ω = N (0, 0.1).

(10)

Finally the simulation is executed and the trajectory of

each object is stored. Examples of initial states for the

generated observations are shown by orange vectors in Fig. 2.

In order to provide a more realistic observation dataset,

noise is added to each trajectory point. The noise model

used is set to N (0, 0.02) according to state-of-the-art object

recognition and pose estimation algorithms [25] and sample

rate is set to 30 Hz. An example of a generated observation

with three objects is shown in Fig. 3.

C. Execution

In our experiments a time step of 10ms was used and

simulation time was set to 5 seconds in order to give enough

time for objects to interact with each other. To determine the

sensitivity of the approach to the number of samples, we

have run experiments with 1, 5 and 10 objects and 10, 50

and 100 samples per object (See Fig. 4). To account for the

possible bias of the random functions used by the parameter

search methods, all the experiments in this work have been

executed 10 times and the results averaged. The generated

dataset of trajectories was divided into 80% for training and

20% for testing.

D. Results and discussion

An example of a prediction is shown in Fig. 1. Fur-

thermore, Fig. 4 shows a comparison of the error obtained

for training and test sets. Overall, the trajectory prediction



obtains an average error of 0.911 m ±0.189 in the test

datasets. The obtained error might seem high but a qualitative

evaluation of prediction results shown in Fig. 5 gives us

the intuition that despite the apparent high error, predictions

are reliable and consistent. Especially if we consider that

trajectories of objects are predicted 5 seconds into the future

and the error added in the trajectory dataset impacts the

initial state estimation that causes the prediction to drift along

time.

Given that a prediction (with 20 noisy-newton samples)

takes around 10 ms, predictions can be updated on-line

according to the perceived state reducing error and drift.

Experiments were executed on a Intel(R) Core(TM) i7-

6700K CPU @ 4.00GHz with 32Gb DDR4@2400Mhz.

V. SEARCH ALGORITHMS EVALUATION

We have evaluated 9 different parameter search methods:

grid search, random search, coordinate descent, parameter

gradient search, adaptive random search, hybrid search,

hybrid-random search, 1D-MH and CMA-ES. The evaluation

criteria is the convergence speed (i.e. number of iterations)

and the final error. Table I shows the parameters used for

each method during the experimental evaluation. To account

for the multiple candidates per iteration used by CMA-ES,

we have counted each J(θs) evaluation as one iteration.

Although not all the update rules have exactly the same

per-iteration cost, the simulation roll-out required to evaluate

each θ′s is orders of magnitude more expensive than any of

the update rules. For that reason we consider all the update

rules to have a negligible per-iteration cost enabling us to

compare convergence rate and speed with the number of

iterations.

All methods were tested with datasets composed of 1, 10

and 20 random objects with 1, 10 and 50 samples per object.

The datasets were generated as explained in Section IV-B.

The different datasets test how dimensionality and number of

samples impact performance. As shown in Fig. 6a, for low

dimensions (14 as obtained by Eq. 3 with m = 2) all the

methods converge fast (around 50 iterations) except 1D-MH

that apparently gets stuck in a local minimum.

As expected, in higher dimensional spaces; grid search,

coordinate descent and parameter gradient do not provide

good results. Surprisingly, as shown in Fig. 6b the adaptive-

random strategy obtains fast convergence and low error for

275 parameters (m=11). As the parameter dimensionality

keeps increasing, the CMA-ES method provides better results

but adaptive-random is still close to the best performance.

Results for a 20 object dataset, with 945 parameters are de-

picted in Fig. 6c. Considering the simplicity of the adaptive-

random strategy versus the more sophisticated CMA-ES, it

is still a good choice for the tested dataset configurations.

VI. REAL EXPERIMENTS

Experiments were performed to showcase the application

of the presented ideas on a real scenario. To capture the

scene, an RGBD sensor was used. Point cloud sequences

of bouncing balls were captured and used as input to our

Grid and Coordinate descent δp = 0.05
Parameter-gradient and adaptive random α = 0.1, β = 0.001
Hybrid i = 300
Hybrid-random s = 5
1D-MH [16] α = 0.05
CMA-ES [20] σ = 0.2, λ = 20

TABLE I

PARAMETER SETTINGS USED FOR THE PARAMETER SEARCH METHOD

EVALUATION.

system, each one containing one observation of a single

object.

A. Experimental setup

The experimental objects used were 3 spheres with 3 cm,

5 cm and 7 cm radius. The object universe to be observed

was restricted to spherical shapes to ease object detection.

The environment can be composed by any number of planes

with the floor plane perpendicular to the gravity vector being

the dominant plane. The experimental setup can also be seen

in the accompanying video, during the real experiments data

acquisition scene.

B. Environment modeling

Our experimental environment is composed of a sup-

porting floor plane and two walls. However, there are no

assumptions made on the number of planes that can be

present in the scene. The environment is reconstructed for

each observation. The plane that contains more points, is

assumed to be the supporting plane and the gravity vector

is assumed to be parallel to the supporting plane normal.

An example of an observation with the detected planes

and gravity vector is shown in Fig. 7. Planes are detected

fusing the first frames of each observation file applying the

RANSAC [26] algorithm with a plane model.

C. Real dataset generation

We collected 90 observations of the three objects described

in Sec. VI-A which were thrown into the scenario by hand

with different velocities and initial positions. The accompa-

nying video shows the data acquisition process, the parameter

search and several predictions with the measured prediction

error.

For each frame of each observation file, all the points

that belong to a detected plane are removed. The remaining

points are used to run a RANSAC algorithm using a spherical

model to detect the bouncing spheres. The detection is

performed frame-to-frame and no temporal data is used.

After processing all the files, the dataset for learning is

generated using the trajectory provided by the frame-to-

frame object detection and averaging the detected object’s

dimensions. See an example of a trajectory in Fig. 7.

D. Results and discussion

We executed the parameter search process for each group

of 30 samples and obtained the mean error shown in Fig. 8.

Although errors are lower than results obtained with the
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Fig. 4. Training and test results after 10 executions on different datasets.

Fig. 5. Examples of predicted trajectories (blue) compared with the
test set trajectories (green) and the error between each data point (red).
Although mean errors are high, trajectories are qualitatively approximate.
Mean distance corresponds to J(θs) for each shown observation-prediction
pair.

synthetic dataset, it is important to note that the scale of

objects and trajectories is also smaller.

Predictions are very sensitive to initial state estimation

errors that produce early trajectory drift. This idea is sup-

ported by the inverse correlation of object size and prediction

error as shown in Fig. 8. However, results show that feasible

trajectories can be predicted even with an unfiltered dataset

obtained with straightforward methods.

VII. CONCLUSIONS

Our intuitive physics engine is able to learn a reduced

universe of object models from observations and make prob-

abilistic predictions of their motion. Predictions were vali-

dated by simulated and real experiments. Our results show

that it is possible to use probabilistic simulation to provide

fairly accurate predictions. However, the learning process is

time consuming and has to be substantially improved to allow

on-line learning and prediction.

Additionally, our experimental evaluation of 9 different

parameter search methods, has shown that both CMA-ES

and our Adaptive Random are a good choice for learning.

Such an intuitive physics engine will enable further re-

search in probabilistic predictive models. It is our firm belief

that on-line geometric and physical modeling will play a

major role for the future of humanoid robots.
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Fig. 6. Parameter search performance evaluation: J(θs) vs. iterations for
datasets of 1, 10, 20 objects and 50 samples per object. For each iteration
and update rule, vertical axis shows the J(θs) value averaged over 10 runs.



Fig. 7. Observation process of a bouncing ball on the real experimental
setup. Detected planes wire-frame in black. Detected sphere shown in cyan.
Observed trajectory is shown in magenta and each sample point is shown
in cyan. Gravity vector is shown in red.
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 Fig. 8. Prediction error for each of the objects in the real dataset.
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