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Abstract—Collaborative robots are transforming automation
by executing and adapting to diverse tasks through high-level
commands. This progress is fueled by advanced multimodal AI
models and human-robot imitation paradigms, enabling com-
pelling real-world applications. Our research integrates human
demonstrations to automate tasks with Cobots using intuitive
interfaces for data collection and real-time teleoperation, facili-
tating interactive robot programming with immersive interfaces.
Despite significant advancements in this field, challenges persist
in deploying cost-effective, multi-user instrumentation at scale,
especially in industries handling fragile objects that require
precise tactile and visual perception in ultra-clean environments.
We propose using multi-cue human demonstrations to define and
structure grasping, placement, transport, and perception prim-
itives, enhancing Cobots’ manipulation capabilities without re-
quiring retraining. Our mixed-reality approach enables scalable
Cobot programming, addressing limitations in object sizes, users’
vantage points, and kinematic registrations of head-mounted
displays, cameras, and robots. Our research aims to democratize
robot programmability via enhanced mixed-reality human-robot
interfaces and online imitation, transforming Cobots into efficient
helpers.

I. INTRODUCTION

The field of AI-robotics is rapidly evolving, with collab-
orative robots emerging as intelligent assistants capable of
executing diverse physical tasks using high-level prompts as
semantic commands [1]. This evolution is fueled by novel
multimodal AI models and data-driven human-robot imitation
paradigms, paving the way for unprecedented automation in
real-world deployments [2]. A key enabler aspect of these
advancements is the coherent acquisition of human demon-
strations to train, fine-tune, and validate these approaches [3].
This requires human-robot interfaces that empower users with
intuitive simulation and teleoperation mechanisms, while also
managing environmental and operational restrictions. Addi-
tionally, these interfaces must be cost-effective and scalable
to support complex processes like machine tending in clean
rooms for semiconductor inspection and manufacturing. De-
spite advances in AI-driven robot programmability, challenges
persist in instrumentation costs and end-effector materials,
especially for handling small, fragile objects in diverse batches
requiring precise tactile sensing and visual perception.

Our research utilizes multi-cue human demonstrations to
define grasping primitives, combining contact points and sta-
ble closures within suitable pressure ranges. Mixed reality
interfaces enable users to define and execute complex grasp
configurations, overcoming sub-millimeter limitations and oc-
cluded perspectives. This approach is promising for industries
where product size, shape, and materials pose challenges,
such as semiconductor, pharmaceutical, and chemical sec-
tors. Our programming-by-demonstration involves real-time

Fig. 1. Tangible Immersion for Cobot Programming-by-Demonstration.
Cobot programming-by-demonstration through cost-effective and easy-to-
deploy mixed reality interfaces are grounded on novel form factors for tactile
sensing and haptic feedback interfaces. This approach empowers non-experts
to rapidly and intuitively create robot action primitives, composing dependable
Cobot task-flows for automation during inspection and manufacturing.

human-robot task co-execution, mixed-reality teleoperation,
and novel visuo-haptic feedback interfaces, structuring actions
into modular robot workflows, see Fig. 2. This enables creating
robot programs through iconographic flowcharts (see Fig. 4),
demonstrating Cobots’ adaptability in tasks like stacking wafer
trays. We aim to minimize programming effort for Cobots,
using AI-sensorimotor primitives and hierarchical task graphs.
Our goal is to economically democratize robot programma-
bility, fostering opportunities across diverse manufacturing
processes.

II. METHODOLOGY

A. Mixed-Reality for Cobot Programming-by-Demonstration

Creating dependable automation recipes in manufacturing
with Cobots requires specialized knowledge of both robotics
and the manufacturing process itself. Empowering general
users to utilize Cobots to offload tasks is of key value in man-
ufacturing. Consequently, the robotics community has been
exploring diverse paradigms to democratize robot programma-
bility. A crucial element in simplifying this programming pro-
cess is making the state of the environment, robot, tools, and
task components observable and manipulable via natural and
intuitive means, regardless of their scale, pose, and geographic
location. This is where mixed reality provides a convenient set
of possibilities by removing the limitations of physical scale
and the user’s vantage point in the process. Moreover, the
need for co-location of user and system is eliminated through a
digital twin of the physical world represented in a scene graph,
see Fig.2. Three elements facilitate effective user immersion
and agency for programming-by-demonstration:



Fig. 2. Mixed-Reality for Cobot Programming-by-Demonstration. The real-time visualization of 3D assets within a unified spatio-temporal kinematic
frame enables the overlay of reconstructed surfaces from RGBD data, creating a mixed-reality environment for Cobot teleoperation. This visualization is ideal
for developing Cobot programs through annotated task co-execution. a) The kinematic registration reference frame of the head-mounted display, obtained via
a simple 3-point annotation, is depicted within the 3D scene. b) Handheld controls facilitate visualization of feasible actions with contextual menus during
grasp and placement demonstrations. c) The 3D surface reconstruction combining depth and color streams blends reality with registered CAD/CAM models,
showing kinematic frames for grasp primitives in relation to the tray, labeled as d) pre-grasp, e) grasp and f) post-grasp. The 6D-invariant grasp primitive
offers high-level composability and low-level robust execution. g) Finally, the user’s hand in mixed reality demonstrates the system’s low latency, see video.

• Perceptual Immersiveness: Mixed reality visualizations
created from real-time 6D registration using robot perception
(section II-B) allows users to view the scene from any vantage
point and scale, whether standing in the middle of a worktable
or making the robot’s gripper the size of a room, see Fig 1-d.
• Spatio-temporal Consistency: By recognizing objects in the
scene using 3D vision and 6D pose estimation methods, either
via markers or other mechanisms, the robot setup can register
objects in a consistent kinematic tree (via ROS TF). This
allows robot and mixed reality processes to share a common
state for visualization and contact feedback at any position and
scale meeting users and situations needs, see Fig.2-a,b,c.
• Tangible Actionability: Integration of head-mounted display
and controllers with haptic-feedback by registering to the same
kinematic tree allows users to dispatch commands (via ROS
topics) from handheld devices at high frame rates, transferring
users kinematic frames to transform and mimic human actions
in the shared space-time explicitly. Thus, motions, contact
actions and associated haptic feedback are grounded in the
mixed reality world creating the tangible user experience
needed to empower the transfer of factual process knowledge
via simple handheld annotated demonstrations, see Fig.2-
d,e,f. Together, these elements establish a robust framework
for translating human intentions and process knowledge into
robot actions within a mixed reality environment. Importantly,
the physical co-location of the human and robot is optional.
Users can register the headset and handheld controllers to a
kinematic frame in the physical world, either directly on the
robot’s support table (Fig.2-g) or remotely on any surface,
ensuring a physical relation when calibrating the system in
6D pose and scale. This decoupling is compatible with both
real robot execution and simulation.

B. Robot-Action Primitives

The robot action primitives system architecture is designed
to facilitate efficient task co-execution via teleoperation as well
as autonomous execution by the robot during task offloading.
The architecture in Fig. 3 consists of four key components:

1) Real-time Scene-layout Perception: The real-time scene-
layout perception system supports the robot’s ability to interact
with its environment. The in-hand RGBD camera continuously
monitors the scene, detecting objects and updating their posi-
tions using AprilTags [4]. While we use AprilTags to detect
objects, any other method capable of detecting and localizing
objects is suitable to replace and or expand this module.

The scene layout memory system stores information about
object 6D pose, allowing the robot to target objects even when
they are temporarily out of view. This object permanency
feature enables the robot to move towards the last known
position of an object, updating its pose as soon as the object
re-enters the camera’s field of view. Hence, the robot acts on
updated 6D poses, ensuring precise and reliable task execution.

2) Teleoperation system: Remote guidance provides a flex-
ible and intuitive method for controlling the robot arm. The
operator uses handheld controllers to input pose commands,
which are translated into arm movements. The robot replicates
the relative movements of the handheld controller, starting
from a defined initial position. To enhance operator comfort,
the system allows for pausing and resuming teleoperation.
The robot’s movements remain smooth and predictable due
to the relative positioning approach, which prevents sudden or
erratic motions. This is achieved by calculating an offset trans-
formation for the handheld controller each time teleoperation
is activated. The robot is controlled in task space by a PID
that computes the twist command ẋ based on the difference
between the current end-effector pose and the offset-adjusted

https://www.dropbox.com/scl/fi/gpdgsa8t44gvkwzsdgi3d/Human-Robot-Collaboration_PbD_2023_75MB.mp4?rlkey=gsolb8y6hjsuw57qkyg48xwl6&st=4zgen5ll&dl=0


Fig. 3. Robot-action Primitives System Architecture.

controller position e(t) = xc(t)− x(t),

ẋ(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
. (1)

Two sets of gains {Kp,Ki,Kd} are employed: a slow (low
gain) mode for distant target positions, minimizing sudden
movements and signaling a gradual approach, and a fast (high
gain) mode for close target positions, enabling quick and
precise adjustments for fine and responsive control. Depending
on a configurable threshold on e(t) the gains switch between
the slow and quick reaction modes.

3) Manipulation Primitives: The robot’s ability to perform
complex tasks is built upon a set of fundamental action
primitives [5]. These primitives serve as the building blocks
for more sophisticated behaviors. Every primitive needs a set
of required parameters to be specified and allows for some
optional parameters that can fine-tune the behavior of the
primitive. See an example of a parameterized grasp primitive
in Fig. 4, where the pre-grasp, grasp, post-grasp, and other
nuanced parameters are defined. The other robot’s action
primitives include Move, Place, LookAt, and Perceive. LookAt
orients the camera towards a specific point, while Perceive
updates the scene state and identifies objects in view.

4) Robot control: The robot control system integrates
several modules. The robot control multiplexer dynamically
manages input sources, allowing seamless transitions between
teleoperation and autonomous modes. The differential kine-
matic controller transforms task space twist commands ẋ into
joint velocities θ̇ using the Jacobian Pseudo-inverse method.
For redundant manipulators a secondary joint target θsec is
projected via nullspace,

θ̇(t) = J†(t)ẋ(t) + Null(J†(t))(θsec − θ(t)). (2)

ROS2 control provides a standardized interface for real-time
communication and synchronization across components. Low-
level controllers directly actuate the robot’s joints and motors
using velocity or position controllers.

C. Primitive Teaching and Task Description

The flexible parameterization is what makes the system
capable of performing a variety of tasks involving different
objects, environments, and action sequences. This is where
our mixed reality teleoperation system excels, by enabling
users to define how the robot should interact with various
sets of objects. Through teleoperation, users specify explicit
object-centric parameters that can be encapsulated in object-
specific primitives, allowing for tailored interactions based

on the unique characteristics of each object. An example is
the definition of the grasp primitive (see Fig. 2-d,e,f) which
involves teleoperating the robot’s end effector to the pre-grasp,
grasp, and post-grasp poses deemed appropriate for the target
object category. This approach allows users to impart their
expertise in handling tasks without any robotics knowledge.

D. Task descriptions and autonomous execution

When the individual primitives are parameterized for each
of the objects, they can be composed to perform complex
tasks. The perceived action is often the initial step in a
sequence of primitives, providing the necessary context for
subsequent actions such as move, grasp, and place. These
primitives are designed to be modular and adaptable, enabling
the robot to perform a wide range of tasks by combining and
sequencing them as needed. By leveraging these fundamental
actions, the robot can learn and execute tasks through simple
scripts that sequence actions grounded on perceived objects.
An example of this representation is shown in Fig. 4, illustrat-
ing how tasks are structured and executed autonomously.

E. Tactile Sensing

Handling small, fragile objects in semiconductor foundries
and high-precision applications presents significant challenges
due to the absence of delicate, pressure-aware handling so-
lutions. Current sensors often lack the necessary sensitivity,
dynamic range for both lighting and pressure detection, and
high-resolution capabilities required for these tasks. Addition-
ally, existing sensing technologies, such as flexible polymers,
resistive foams, or metal/polymer coil arrays, are unsuitable for
opto-electronic interfaces and pharma-biotechnological pro-
cesses [6], [7]. Frequent offline re-calibrations of commercial
sensors further exacerbate manufacturing time and costs.

Current tactile solutions lack the necessary form factors
and integration, limiting their effectiveness [8], [9]. To ad-
dress these limitations, we propose a solution that leverages
collaborative robots equipped with innovative sensor-actor
units and visuo-haptic algorithms, see Fig.5-a. These units are
designed to achieve beyond-human precision in delicate object
handling, offering automated material handling that reduces
risks associated with cleanliness, damage, and human error.

By fusing real-time information, this approach dynamically
avoids obstacles and optimizes pickup position, orientation,
and lighting for each situation, accommodating sample sizes
from 7 to 200 millimeters, see Fig.5-b. This visuo-haptic
approach provides a single, cost-effective solution that main-
tains exceptional quality and cleanliness compared to human



Fig. 4. Robot Task Representation via Action Primitives. A sequence of modular primitives are combined to execute complex tasks autonomously. Each
primitive is grounded on perceived objects, allowing for flexible and adaptable task execution. The zoomed-in views display the JSON files generated which
describe the task sequence and the parameters for each primitive, highlighting the structured and programmable nature of task configuration.

Fig. 5. Novel Tactile Sensing and Haptic Feedback Devices. a) The integrated active illumination and b) replaceable-transducer in the tactile sensor capture
contact’s pressure at high frequency (1 Khz) without contamination materials for easy and economic deployment. The haptic handheld feedback device allows
the user to sense c) contacts and forces applied to and by the robot with d) low-latency (∼2 ms) and low-cognitive load e) opening new channels of effective
communication between humans and robot in mixed reality.

operators, enhancing process quality, yield, and throughput in
high-mix, low-volume situations with delicate parts.

F. Haptic Feedback

1) Motivation and Limitations of State-of-the-art: The mo-
tivation for enhancing haptic feedback in mixed reality sys-
tems is driven by the need to improve user immersion and
interaction precision, particularly in teleoperation tasks. Cur-
rent mixed reality controllers primarily offer low-dimensional
vibrotactile feedback, resulting in monolithic vibrations that
fail to convey detailed tactile information necessary for com-
plex tasks [10]. While advancements have been made in
motion tracking and ergonomics, the haptic capabilities of

these devices remain limited. Our prototype (see Fig5-e)
addresses these limitations by integrating a flexible membrane
with strategically placed linear resonant actuators (LRAs),
providing localized and varied tactile sensations. This design
enhances the richness of haptic feedback, crucial for improving
user interaction precision and immersion without disrupting
the teloperation experience, as compared to kinesthetic force
feedback that is prone to have a harmful effect on the stability
of the control loop [11].

2) Design Principles and Key Features: The design of our
haptic prototype focuses on maximizing user immersion and
interaction precision through a membrane with strategically
placed LRAs. The actuators are aligned with the receptivity



zones of the human hand, particularly at the distal parts of
the fingers where mechanoreceptors are densely packed [12].
This placement ensures effective stimulation of both Rapid
Adapting (RA) and Slow Adapting (SA) mechanoreceptors,
providing rich tactile cues for motion guidance and force
perception [13]. The high-density array of LRAs allows for
the conveyance of multi-dimensional haptic cues and patterns.
Figure 5-e illustrates a use case scenario in which the tactile
array is used to render intuitive haptic cues that indicate
both the direction and intensity of contact forces perceived
at the robot’s end effector. These features enhance the overall
telepresence experience for the operator, making interactions
more natural and immersive.

3) Contact and Contactless State Disclosure with Low-
latency and Low-cognitive load: Our prototype excels in
disclosing contact and contactless states with minimal latency
and cognitive load, enhancing user immersion and interaction
precision. To achieve this, the device utilizes embedded haptic
patterns stored in its memory, allowing for the rendering of
vibrations based on local information rather than relying on
the continuous transmission of large amounts of data. This
approach significantly reduces latency, ensuring rapid and
responsive feedback. The device features a soft mechanism to
isolate mechanical LRA waves across the membrane, ensuring
localized stimulation across different hand regions. This design
supports low cognitive load interactions by allowing the user
to discriminate tactile stimulation, see Fig.5-d. Enhancing
the haptic capabilities of mixed reality handheld controllers
significantly improves user situational awareness and spatial
coordination during teleoperation tasks, making the prototype
an optimal solution for high-mix, low-volume teleoperation in
manufacturing and other applications.

III. DISCUSSION AND CONCLUSION

We introduced and integrated three innovative technology
components: 1) programming-by-demonstration using mixed
reality for local and remote teleoperation and task automation,
2) advanced form factors for sensing and haptic feedback
that establish a tangible connection with the physical world
during the creation of robot action primitives, and 3) a task
description framework based on modular and adaptable robot
action primitives for synthesizing complex tasks.

These technologies collectively form a unique framework
that offers several benefits: (1) high precision in task execution,
achieving millimeter accuracy, (2) an intuitive immersive user
interface, ensuring accurate perception of the digital twin and
tangible sensing of interactions, and (3) efficient creation of
robot tasks by demonstrating a sequence of actions within a
real scene. This framework not only enhances the capabilities
of collaborative robots but also democratizes their programma-
bility, making advanced automation accessible to a broader
range of users and applications across industries.
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